771 research outputs found

    Ashtekar Variables in Classical General Realtivity

    Full text link
    This paper contains an introduction into Ashtekar's reformulation of General Relativity in terms of connection variables. To appear in "Canonical Gravity - From Classical to Quantum", ed. by J. Ehlers and H. Friedrich, Springer Verlag (1994).Comment: 31 Pages, Plain-Tex; Further comments were added, minor grammatical changes made and typos correcte

    Ultimate response dynamics achieved with gas sensors based on self-heated nanowires

    Get PDF
    Bias current applied to conductometric gas sensors consisting of individual metal oxide nanowires can be used to heat them up to the temperature necessary for sensing. This approach in combination with the good sensitivity and stability of metal-oxide nanowires, can be used to develop prototypes with low power requirements (few tens of microwatts). Here, we present new sensors devices based on this approach that display fast dynamic performance only limited by the gas-solid interaction kinetics,. © 2009

    Quantization of static space-times

    Full text link
    A 4-dimensional Lorentzian static space-time is equivalent to 3-dimensional Euclidean gravity coupled to a massless Klein-field. By canonically quantizing the coupling model in the framework of loop quantum gravity, we obtain a quantum theory which actually describes quantized static space-times. The Kinematical Hilbert space is the product of the Hilbert space of gravity with that of imaginary scalar fields. It turns out that the Hamiltonian constraint of the 2+1 model corresponds to a densely defined operator in the underlying Hilbert space, and hence it is finite without renormalization. As a new point of view, this quantized model might shed some light on a few physical problems concerning quantum gravity.Comment: 14 pages, made a few modifications, added Journal-re

    Self-assembly mechanism in colloids: perspectives from Statistical Physics

    Full text link
    Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model -- the Kern-Frenkel model -- describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperature-density plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.Comment: 14 pages, 7 figures, Special issue for the SigmaPhi2011 conferenc

    Gauge fixing and the Hamiltonian for cylindrical spacetimes

    Full text link
    We introduce a complete gauge fixing for cylindrical spacetimes in vacuo that, in principle, do not contain the axis of symmetry. By cylindrically symmetric we understand spacetimes that possess two commuting spacelike Killing vectors, one of them rotational and the other one translational. The result of our gauge fixing is a constraint-free model whose phase space has four field-like degrees of freedom and that depends on three constant parameters. Two of these constants determine the global angular momentum and the linear momentum in the axis direction, while the third parameter is related with the behavior of the metric around the axis. We derive the explicit expression of the metric in terms of the physical degrees of freedom, calculate the reduced equations of motion and obtain the Hamiltonian that generates the reduced dynamics. We also find upper and lower bounds for this reduced Hamiltonian that provides the energy per unit length contained in the system. In addition, we show that the reduced formalism constructed is well defined and consistent at least when the linear momentum in the axis direction vanishes. Furthermore, in that case we prove that there exists an infinite number of solutions in which all physical fields are constant both in the surroundings of the axis and at sufficiently large distances from it. If the global angular momentum is different from zero, the isometry group of these solutions is generally not orthogonally transitive. Such solutions generalize the metric of a spinning cosmic string in the region where no closed timelike curves are present.Comment: 12 pages, accepted for publication in Physical Review

    Applications of a New Proposal for Solving the "Problem of Time" to Some Simple Quantum Cosmological Models

    Get PDF
    We apply a recent proposal for defining states and observables in quantum gravity to simple models. First, we consider a Klein-Gordon particle in an ex- ternal potential in Minkowski space and compare our proposal to the theory ob- tained by deparametrizing with respect to a time slicing prior to quantiza- tion. We show explicitly that the dynamics of the deparametrization approach depends on the time slicing. Our proposal yields a dynamics independent of the choice of time slicing at intermediate times but after the potential is turned off, the dynamics does not return to the free particle dynamics. Next we apply our proposal to the closed Robertson-Walker quantum cosmology with a massless scalar field with the size of the universe as our time variable, so the only dynamical variable is the scalar field. We show that the resulting theory has the semi-classical behavior up to the classical turning point from expansion to contraction, i.e., given a classical solution which expands for much longer than the Planck time, there is a quantum state whose dynamical evolution closely approximates this classical solution during the expansion. However, when the "time" gets larger than the classical maximum, the scalar field be- comes "frozen" at its value at the maximum expansion. We also obtain similar results in the Taub model. In an Appendix we derive the form of the Wheeler- DeWitt equation for the Bianchi models by performing a proper quantum reduc- tion of the momentum constraints; this equation differs from the usual one ob- tained by solving the momentum constraints classically, prior to quantization.Comment: 30 pages, LaTeX 3 figures (postscript file or hard copy) available upon request, BUTP-94/1

    Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience.

    Get PDF
    BACKGROUND: Uveal melanoma exhibits a high incidence of metastases; and, to date, there is no systemic therapy that clearly improves outcomes. The anticytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) antibody ipilimumab is a standard of care for metastatic melanoma; however, the clinical activity of CTLA-4 inhibition in patients with metastatic uveal melanoma is poorly defined. METHODS: To assess ipilimumab in this setting, the authors performed a multicenter, retrospective analysis of 4 hospitals in the United States and Europe. Clinical characteristics, toxicities, and radiographic disease burden, as determined by central, blinded radiology review, were evaluated. RESULTS: Thirty-nine patients with uveal melanoma were identified, including 34 patients who received 3 mg/kg ipilimumab and 5 who received 10 mg/kg ipilimumab. Immune-related response criteria and modified World Health Organization criteria were used to assess the response rate (RR) and the combined response plus stable disease (SD) rate after 12 weeks, after 23 weeks, and overall (median follow-up, 50.4 weeks [12.6 months]). At week 12, the RR was 2.6%, and the response plus SD rate was 46.%; at week 23, the RR was 2.6%, and the response plus SD rate was 28.2%. There was 1 complete response and 1 late partial response (at 100 weeks after initial SD) for an immune-related RR of 5.1%. Immune-related adverse events were observed in 28 patients (71.8%) and included 7 (17.9%) grade 3 and 4 events. Immune-related adverse events were more frequent in patients who received 10 mg/kg ipilimumab than in those who received 3 mg/kg ipilimumab. The median overall survival from the first dose of ipilimumab was 9.6 months (95% confidence interval, 6.3-13.4 months; range, 1.6-41.6 months). Performance status, lactate dehydrogenase level, and an absolute lymphocyte count ≥ 1000 cells/μL at week 7 were associated significantly with survival. CONCLUSIONS: In this multicenter, retrospective analysis of 4 hospitals in the United States and Europe of patients with uveal melanoma, durable responses to ipilimumab and manageable toxicity were observed

    Non--power law behavior of the radial profile of phase--space density of halos

    Full text link
    We study the pseudo phase-space density, ρ(r)/σ3(r)\rho(r)/\sigma^3(r), of Λ\LambdaCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ3(r)\rho(r)/\sigma^3(r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ3(r)\rho(r)/\sigma^3(r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ3(r)\rho(r)/\sigma^3(r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009).Comment: 20 pages; 7 figs. arXiv admin note: substantial text overlap with arXiv:0906.4447 and arXiv:1012.432

    The status of GEO 600

    Get PDF
    The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode
    corecore